Advertisements
Advertisements
Question
If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is
Options
3x + 2y + 14 = 0
3x + 2y − 25 = 0
2x − 3y + 10 = 0
none of these.
Solution
3x + 2y + 14 = 0
The vertex and the focus of a parabola are (−1, 1) and (2, 3), respectively.
∴ Slope of the axis of the parabola = \[\frac{3 - 1}{2 + 1} = \frac{2}{3}\]
Slope of the directrix = \[\frac{-3}{2}\]
Let the directrix intersect the axis at K (r, s).
∴ \[\frac{r + 2}{2} = - 1, \frac{s + 3}{2} = 1\]
\[ \Rightarrow r = - 4, s = - 1\]
Equation of the directrix: \[\left( y + 1 \right) = \frac{- 3}{2}\left( x + 4 \right)\]
\[\Rightarrow 3x + 2y + 14 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola whose:
focus is (3, 0) and the directrix is 3x + 4y = 1
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose:
focus is (2, 3) and the directrix x − 4y + 3 = 0.
Find the equation of the parabola if
the focus is at (0, −3) and the vertex is at (0, 0)
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3.
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
Find the equation of the following parabolas:
Vertex at (0, 4), focus at (0, 2)
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.
If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.