Advertisements
Advertisements
Question
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
Solution
Equation of parabola is y2 = 4ax
Let P(at2, 2at) be any point on the parabola.
In ΔPOA, we have
tan θ = `(2at)/(at^2) = 2/t`
⇒ t = `2/(tan theta)`
⇒ t = 2 cot θ .....(i)
OP = `sqrt((at^2 - 0)^2 + (2at - 0)^2)`
= `sqrt(a^2t^4 + 4a^2t^2)`
= `at sqrt(t^2 + 4)`
= `a xx 2 cot theta sqrt(4 cot^2 theta + 4)` .....[∵ t = 2 cot θ]
= `2a cot theta . 2sqrt(cot^2theta + 1)`
= 4a cot θ.cosec θ
= `4a * costheta/sintheta * 1/sintheta`
= `(4a costheta)/(sin^2theta)`
Hence, the required length = `(4a costheta)/(sin^2theta)`.
APPEARS IN
RELATED QUESTIONS
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose:
focus is (2, 3) and the directrix x − 4y + 3 = 0.
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
At what point of the parabola x2 = 9y is the abscissa three times that of ordinate?
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.
Find the equation of the following parabolas:
Vertex at (0, 4), focus at (0, 2)
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.