English

The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______. - Mathematics

Advertisements
Advertisements

Question

The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.

Fill in the Blanks

Solution

The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is 4x2 + 4xy + y2 + 4x + 32y + 16 = 0.

Explanation:

. Let (x1, y1) be any point on the parabola.

According to the definition of the parabola

`sqrt((x_1 + 1)^2 + (y_1 + 2)^2) = |(x_1 - 2y_1 + 3)/sqrt((1)^2 + (-2)^2)|`

Squaring both sides, we get

`x_1^2 + 1 + 2x_1 + y_1^2 + 4 + 4y_1 = (x_1^2 + 4y_1^2 + 9 - 4x_1y_1 - 12y_1 + 6x_1)/5`

⇒ `x_1^2 + y_1^2 + 2x_1 + 4y_1 + 5 = (x_1^2 + 4y_1^2 - 4x_1y_1 - 12y_1 + 6x_1 + 9)/5`

⇒ `5x_1^2 + 5y_1^2 + 2x_1 + 10x_1 + 20y_1 + 25 = x_1^2 + 4y_1^2 - 4x_1y_1 - 12y_1 + 6x_1 + 9`

⇒ `4x_1^2 + y_1^2 + 4x_1 + 32y_1 + 4x_1y_1 + 16` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 205]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 45 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×