English

Find the Equations of the Lines Joining the Vertex of the Parabola Y2 = 6x to the Point on It Which Have Abscissa 24. - Mathematics

Advertisements
Advertisements

Question

Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 

Solution

Let A and B be points on the parabola y2 = 6x and OA, OB be the lines joining the vertex O to the points A and B whose abscissa are 24. 


Now,
y2 = 6 × 24 = 144
⇒ y = ± 12
Therefore the coordinates of the points A and B are (24, 12) and (24, –12) respectively.
Hence the lines are given by

\[y - 0 = \pm \frac{12 - 0}{24 - 0}(x - 0)\]
\[ \Rightarrow \pm 2y = x\]
\[\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.1 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.1 | Q 13 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×