हिंदी

Find the Equations of the Lines Joining the Vertex of the Parabola Y2 = 6x to the Point on It Which Have Abscissa 24. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 

उत्तर

Let A and B be points on the parabola y2 = 6x and OA, OB be the lines joining the vertex O to the points A and B whose abscissa are 24. 


Now,
y2 = 6 × 24 = 144
⇒ y = ± 12
Therefore the coordinates of the points A and B are (24, 12) and (24, –12) respectively.
Hence the lines are given by

\[y - 0 = \pm \frac{12 - 0}{24 - 0}(x - 0)\]
\[ \Rightarrow \pm 2y = x\]
\[\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Parabola - Exercise 25.1 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 25 Parabola
Exercise 25.1 | Q 13 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×