Advertisements
Advertisements
प्रश्न
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Given equation of parabola is y2 = 4ax .....(i)
And the equation of line is lx + my + n = 0 ......(ii)
From equation (ii), we have
y = `(-lx - n)/m`
Putting the value of y in equation (i) we get
`((-lx - n)/m)^2 = 4ax`
⇒ `l^2x^2 + n^2 + 2lnx - 4am^2x` = 0
⇒ `l^2x^2 + (2ln - 4am^2)x + n^2` = 0
If the line is the tangent to the circle
Then `b^2 - 4ac` = 0
`(2ln - 4am^2) - 4l^2n^2` = 0
⇒ `4l^2n^2 + 16a^2m^4 - 16lnm^2a - 4l^2n^2` = 0
⇒ `16a^2m^4 - 16lnm^2a` = 0
⇒ `16am^2(am^2 - ln)` = 0
⇒ `am^2(am^2 - ln)` = 0
⇒ `am^2 ≠ 0`
∴ `am^2 - ln` = 0
∴ `ln - am^2`
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Focus (0, –3); directrix y = 3
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) focus (–2, 0)
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The locus of the points of trisection of the double ordinates of a parabola is a
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.