हिंदी

If V and S Are Respectively the Vertex and Focus of the Parabola Y2 + 6y + 2x + 5 = 0, Then Sv = - Mathematics

Advertisements
Advertisements

प्रश्न

If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV

विकल्प

  • 1/2 

  • none of these 

MCQ

उत्तर

1/2 

Given:
The vertex and the focus of a parabola are V and S, respectively.
The given equation of parabola can be rewritten as follows:  

\[\left( y + 3 \right)^2 - 9 + 5 + 2x = 0\] 

\[\Rightarrow \left( y + 3 \right)^2 + 2x = 4\]
\[ \Rightarrow \left( y + 3 \right)^2 = 4 - 2x\]
\[ \Rightarrow \left( y + 3 \right)^2 = - 2\left( x - 2 \right)\] 

Let

\[Y = y + 3, X = x - 2\] 
Then, the equation of parabola becomes \[Y^2 = - 2X\] 
Vertex = \[\left( X = 0, Y = 0 \right) = \left( x - 2 = 0, y + 3 = 0 \right) = \left( x = 2, y = - 3 \right)\] 
Comparing with y2 = 4ax:\[4a = 2 \Rightarrow a = \frac{1}{2}\] 
Focus = \[\left( X = \frac{- 1}{2}, Y = 0 \right) = \left( x - 2 = \frac{- 1}{2}, y + 3 = 0 \right) = \left( x = \frac{3}{2}, y = - 3 \right)\]
⇒ SV = \[\sqrt{\left( 2 - \frac{3}{2} \right)^2 + \left( - 3 + 3 \right)^2} = \frac{1}{2}\] 
 
 
 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Parabola - Exercise 25.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 25 Parabola
Exercise 25.3 | Q 9 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×