हिंदी

The Locus of the Points of Trisection of the Double Ordinates of a Parabola is a - Mathematics

Advertisements
Advertisements

प्रश्न

The locus of the points of trisection of the double ordinates of a parabola is a 

विकल्प

  • pair of lines 

  •  circle

  • parabola 

  • straight line 

MCQ

उत्तर

 parabola 

Suppose PQ is a double ordinate of the parabola \[y^2 = 4ax\] 

Let R and be the points of trisection of the double ordinates.
Let \[\left( h, k \right)\] be the coordinates of R. 

Then, we have:
OL = h  and RL = k  

\[\therefore RS = RL + LS = k + k = 2k\]
\[ \Rightarrow PR = RS = SQ = 2k\]
\[ \Rightarrow LP = LR + RP = k + 2k = 3k\]

Thus, the coordinates of P are \[\left( h, 3k \right)\] which lie on \[y^2 = 4ax\] 

∴ \[9 k^2 = 4ah\] 

Hence, the locus of the point (hk) is \[9 y^2 = 4ax\]  i.e.  \[y^2 = \left( \frac{4a}{9} \right)x\] which represents a parabola.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Parabola - Exercise 25.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 25 Parabola
Exercise 25.3 | Q 7 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×