Advertisements
Advertisements
प्रश्न
Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.
उत्तर
Given parabola is y2 = 8x ......(i)
Comparing with the equation of parabola y2 = 4ax
4a = 8
⇒ a = 2
Now focal distance = |x + a|
⇒ |x + a| = 4
⇒ (x + a) = ± 4
⇒ x + 2 = ± 4
⇒ x = 4 – 2 = 2
And x = – 6
But x ≠ – 6
∴ x = 2
Put x = 2 in equation (i) we get
y2 = 8 × 2 = 16
∴ y = ± 4
So, the coordinates of the point are (2, 4), (2, – 4).
Hence, the required coordinates are (2, 4) and (2, – 4).
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) focus (–2, 0)
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if
the focus is at (−6, −6) and the vertex is at (−2, 2)
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equation of the parabola if the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3.
At what point of the parabola x2 = 9y is the abscissa three times that of ordinate?
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The locus of the points of trisection of the double ordinates of a parabola is a
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.