हिंदी

Find the Equation of the Parabola Whose Focus is the Point (2, 3) and Directrix is the Line X − 4y + 3 = 0. Also, Find the Length of Its Latus-rectum. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 

उत्तर

Let P (xy) be any point on the parabola whose focus is (2, 3) and the directrix is x − 4y+ 3 = 0. 

Draw PM perpendicular to x − 4y 3=0.
Then, we have: 

\[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 3 \right)^2 = \left( \frac{x - 4y + 3}{\sqrt{1 + 16}} \right)^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 3 \right)^2 = \left( \frac{x - 4y + 3}{\sqrt{17}} \right)^2 \]
\[ \Rightarrow 17\left( x^2 + 4 - 4x + y^2 - 6y + 9 \right) = x^2 + 16 y^2 + 9 - 8xy - 24y + 6x\]
\[ \Rightarrow \left( 17 x^2 - 68x + 17 y^2 - 102y + 13 \times 17 \right) = x^2 + 16 y^2 + 9 - 8xy - 24y + 6x\]
\[ \Rightarrow 16 x^2 + y^2 + 8xy - 74x - 78y + 212 = 0\]

Length of the latus rectum = 2(Length of the perpendicular from the focus on the directrix)
                                           = 2(Length of the perpendicular from (2, 3) on the directrix)
                                           =\[2\left| \frac{2 - 12 + 3}{\sqrt{16 + 1}} \right| = 2\left| \frac{- 7}{\sqrt{17}} \right| = 2\left( \frac{7}{\sqrt{17}} \right) = \frac{14}{\sqrt{17}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Parabola - Exercise 25.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 25 Parabola
Exercise 25.1 | Q 2 | पृष्ठ २४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×