हिंदी

If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m. - Mathematics

Advertisements
Advertisements

प्रश्न

If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.

योग

उत्तर

Given that y2 = 4x   ......(i)

And y = mx + 1   .....(ii)

From equation (i) and (ii) we get

(mx + 1)2 = 4x

⇒ m2x2 + 1 + 2mx – 4x = 0

⇒ m2x2 + (2m – 4)x + 1 = 0

Applying condition of tangency, we have

(2m – 4)2 – 4m2 × 1 = 0

⇒ 4m2 + 16 – 16m – 4m2 = 0

⇒ – 16m = – 16

⇒ m = 1

Hence, the required value of m is 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 19 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×