Advertisements
Advertisements
प्रश्न
If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.
उत्तर
Given that y2 = 4x ......(i)
And y = mx + 1 .....(ii)
From equation (i) and (ii) we get
(mx + 1)2 = 4x
⇒ m2x2 + 1 + 2mx – 4x = 0
⇒ m2x2 + (2m – 4)x + 1 = 0
Applying condition of tangency, we have
(2m – 4)2 – 4m2 × 1 = 0
⇒ 4m2 + 16 – 16m – 4m2 = 0
⇒ – 16m = – 16
⇒ m = 1
Hence, the required value of m is 1.
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Focus (0, –3); directrix y = 3
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0); focus (3, 0)
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) focus (–2, 0)
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola if the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3.
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2).
Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The locus of the points of trisection of the double ordinates of a parabola is a
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.