मराठी

The Line 2x − Y + 4 = 0 Cuts the Parabola Y2 = 8x in P and Q. the Mid-point of Pq is - Mathematics

Advertisements
Advertisements

प्रश्न

The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is

पर्याय

  •  (1, 2) 

  •  (1, −2) 

  •  (−1, 2) 

  •  (−1, −2) 

MCQ

उत्तर

(−1, 2) 

Let the coordinates of P and Q be \[\left( a {t_1}^2 , 2a t_1 \right)\] and \[\left( a {t_2}^2 , 2a t_2 \right)\]  respectively.
Slope of PQ = \[\frac{2a t_2 - 2a t_1}{a {t_2}^2 - a {t_1}^2}\]             ......(1) 

But, the slope of PQ is equal to the slope of 2x − y + 4 = 0.
∴ Slope of PQ = \[\frac{- 2}{- 1} = 2\]

From (1), \[\frac{2a t_2 - 2a t_1}{a {t_2}^2 - a {t_1}^2} = 2\]                        .....(2) 

Putting 4a = 8,
a = 2 

∴ Focus of the given parabola = (a, 0) = \[\left( 2, 0 \right)\] 

Using equation (2):

\[\frac{4\left( t_2 - t_1 \right)}{2\left( {t_2}^2 - {t_1}^2 \right)} = 2\] 

\[\frac{\left( t_2 - t_1 \right)}{\left( {t_2}^2 - {t_1}^2 \right)} = 1\] 

\[\frac{\left( t_2 - t_1 \right)}{\left( {t_2}^2 - {t_1}^2 \right)} = 1\] 

As, points P and Q lie on 2x-y+4=0 

\[\Rightarrow P(a {t_1}^2 , 2a t_1 ) or P(2 {t_1}^2 , 4 t_1 ) \text{  lie on line } 2x - y + 4 = 0\]
\[ \Rightarrow 2\left( 2 {t_1}^2 \right) - \left( 4 t_1 \right) + 4 = 0\]
\[ \Rightarrow {t_1}^2 - t_1 + 1 = 0 . . . (3)\]
\[\text{ Also }, Q(a {t_2}^2 , 2a t_2 ) or P(2 {t_2}^2 , 4 t_2 ) \text{ lie  on  line } 2x - y + 4 = 0\] 
\[ \Rightarrow 2\left( 2 {t_2}^2 \right) - \left( 4 t_2 \right) + 4 = 0\]
\[ \Rightarrow {t_2}^2 - t_2 + 1 = 0 . . . (4)\]
\[\text{ Adding } (3) \text{ and } (4), \text{ we get }, \]
\[ \Rightarrow {t_1}^2 - t_1 + 1 + {t_2}^2 - t_2 + 1 = 0\]
\[ \Rightarrow \left( {t_1}^2 + {t_2}^2 \right) - \left( t_1 + t_2 \right) + 2 = 0\]
\[ \Rightarrow \left( {t_1}^2 + {t_2}^2 \right) - 1 + 2 = 0 \left[ t_1 + t_2 = 1, \text{ proved above } \right]\]
\[ \Rightarrow \left( {t_1}^2 + {t_2}^2 \right) = - 1\]

Let \[\left( x_1 , y_1 \right)\]  be the mid-point of PQ.
Then, we have: \[y_1 = \frac{2a t_2 + 2a t_1}{2} = 2\left( t_1 + t_2 \right) = 2\]

\[x_1 = \frac{a {t_1}^2 + a {t_2}^2}{2} = {t_1}^2 + {t_2}^2 = - 1\] 

⇒ \[\left( x_1 , y_1 \right) = \left( - 1, 2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Parabola - Exercise 25.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 25 Parabola
Exercise 25.3 | Q 12 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The locus of the points of trisection of the double ordinates of a parabola is a 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×