Advertisements
Advertisements
प्रश्न
An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
उत्तर
Parabola y2 = 4ax, an equilateral triangle is formed.
Let the length of its side be p.
ΔOLP in OL2 = OP2 + LP2
p2 = `"OP"^2 + ("p"/2)^2`
∴ OP2 = `"p"^2 - "p"^2/4 = 3/4"p"`
∴ The coordinates of L are `(sqrt3/2, "p"/2)`.
This parabola is situated at y2 = 4ax.
∴ `("p"/2)^2 = 4"a". (sqrt3/2"p")`
or `"p"^2/4 = 4"a" . sqrt3/2 "p"`
p = `8sqrt3"a"`
Hence, the length of the side of an equilateral triangle is `8sqrt3"a"`.
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0); focus (3, 0)
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if
the focus is at (0, −3) and the vertex is at (0, 0)
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equation of the parabola if the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3.
Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2).
Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.
Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
Find the equation of the following parabolas:
Vertex at (0, 4), focus at (0, 2)
Find the equation of the following parabolas:
Focus at (–1, –2), directrix x – 2y + 3 = 0
Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.