English

An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle. - Mathematics

Advertisements
Advertisements

Question

An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

Sum

Solution

Parabola y2 = 4ax, an equilateral triangle is formed.

Let the length of its side be p.

ΔOLP in OL2 = OP2 + LP2

p2 = `"OP"^2 + ("p"/2)^2`

∴ OP2 = `"p"^2 - "p"^2/4 = 3/4"p"`

∴ The coordinates of L are `(sqrt3/2, "p"/2)`.

This parabola is situated at y2 = 4ax.

∴ `("p"/2)^2 = 4"a". (sqrt3/2"p")`

or `"p"^2/4 = 4"a" . sqrt3/2 "p"`

p = `8sqrt3"a"`

Hence, the length of the side of an equilateral triangle is `8sqrt3"a"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Miscellaneous Exercise [Page 264]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 11 Conic Sections
Miscellaneous Exercise | Q 8 | Page 264

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×