English

Ind the Equation of the Parabola If the Focus is at (0, 0) and Vertex is at the Intersection of the Lines X + Y = 1 and X − Y = 3. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 

Solution

In a parabola, the vertex is the mid-point of the focus and the point of intersection of the axis and the directrix.

Let (x1, y1) be the coordinates of the point of intersection of the axis and directrix. 

The point of intersection of \[x + y = 1 \text{ and } x - y = 3\] 

Thus, the vertex and the focus of the parabola are (2, −1) and (0, 0), respectively.

∴ Slope of the axis of the parabola = \[\frac{0 + 1}{0 - 2} = \frac{- 1}{2}\] 

The slope of the directrix is 2.
Let the directrix intersect the axis at K (rs).

\[\frac{r + 0}{2} = 2, \frac{s + 0}{2} = - 1\]
\[ \Rightarrow r = 4, s = - 2\] 
The required equation of the directrix is
\[y + 2 = 2\left( x - 4 \right)\]which can be rewritten as \[y - 2x + 10 = 0\] 
Let (xy) be any point on the parabola whose focus is S (0, 0) and directrix is \[y - 2x + 10 = 0\] 
Draw PM perpendicular to \[y - 2x + 10 = 0\] 
Then, we have:
\[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 0 \right)^2 + \left( y - 0 \right)^2 = \left( \frac{y - 2x + 10}{\sqrt{5}} \right)^2 \]
\[ \Rightarrow 5 x^2 + 5 y^2 = \left( y - 2x + 10 \right)^2 \]
\[ \Rightarrow x^2 + 4 y^2 + 4xy + 40x - 20y - 100 = 0\]
\[ \Rightarrow \left( x + 2y \right)^2 + 40x - 20y - 100 = 0\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.1 | Q 3.5 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×