English

Find the Coordinates of Points on the Parabola Y2 = 8x Whose Focal Distance is 4. - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   

Solution

We have y2 = 8x
⇒ y2 = 4(2)x
Comparing it with the general equation of parabola y2 = 4ax, we will get a = 2
Let the required point be (x1y1)
Now, Focal distance = 4
⇒ x1 + a = 4
⇒ x1 + 2 = 4
⇒ x1 = 2
Now, the point will satisfy the equation of parabola
∴ (y1)2 = 8(2) = 16
⇒ y1 = ± 4
Hence, the coordiantes of the points are (2, 4) and (2, −4).

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.1 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.1 | Q 14 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The locus of the points of trisection of the double ordinates of a parabola is a 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×