Advertisements
Advertisements
Question
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Solution
Let AOB be the cable of uniformly loaded suspension bridge. Let AL and BM be the longest wires of length 30 m each. Let OC be the shortest wire of length 6 m and LM be the roadway.
Now AL = BM = 30 m, OC = 6 m and
LM = 100 m
∴ LC = CM = `1/2` LM = 50 m
Let O be the vertex and axis of the parabola be y-axis. So, the equation of parabola in standard form is x2 = 4ay
Coordinates of point B are (50, 24)
Since point B lies on the parabola, x2 = 4ay
∴ (50)2 = 4a × 24
⇒ a = `2500/(4 xx 24)`
= `625/6`
So, equation of parabola is
x2 = `(4 xx 625)/24 y` = x2 = `625/6 y`
Let length of the supporting wire PQ at a distance of 18 m be h.
∴ OR = 18 m and PR = PQ - QR = h - 6.
Coordinates of point P are (18, h - 6)
Since the point P lies on parabola x2 = `625/6 y`
∴ (18)2 = `625/6 (h - 6)`
= 324 × 6 = 625h - 3750
= 625h = 1944 + 3750
= h = `5694/625`
= 9.11 m approx.
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) focus (–2, 0)
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola if
the focus is at (−6, −6) and the vertex is at (−2, 2)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equation of the parabola if the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3.
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2).
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.