English

Psq is a Focal Chord of the Parabola Y2 = 8x. If Sp = 6, Then Write Sq. - Mathematics

Advertisements
Advertisements

Question

PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ

Solution

The coordinates of the focal chord are \[P \left( a t^2 , 2at \right) a\text{ and } Q \left( \frac{a}{t^2}, \frac{- 2a}{t} \right)\] 

Comparing y2 = 8x with

\[y^2 = 4ax\]
a = 2 
Therefore, the coordinates of the focus S is \[\left( 2, 0 \right)\] 
Given:
SP = 6 
\[\therefore \sqrt{\left( 2 - 2 t^2 \right)^2 + \left( 4t \right)^2} = 6\]
\[ \Rightarrow t^4 + 2 t^2 - 8 = 0\]
\[ \Rightarrow t^2 = 2\] 

Thus, we have:
SQ = \[\sqrt{\left( 2 - \frac{2}{t^2} \right)^2 + \left( \frac{4}{t^2} \right)}\] 

\[\sqrt{\left( 2 - \frac{2}{2} \right)^2 + \left( \frac{4}{2} \right)}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.2 | Q 7 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The locus of the points of trisection of the double ordinates of a parabola is a 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×