Advertisements
Advertisements
Question
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Solution
In a parabola, the vertex is the mid-point of the focus and the point of intersection of the axis and the directrix.
Let (x1, y1) be the coordinates of the point of intersection of the axis and directrix.
It is given that the vertex and the focus of a parabola are (−1, −3) and (0, −3), respectively.
Thus, the slope of the axis of the parabola is zero.
And, the slope of the directrix
∴ \[\frac{r + 0}{2} = - 1, \frac{s - 3}{2} = - 3\]
\[ \Rightarrow r = - 2, s = - 3\]
∴ Required equation of the directrix:
\[x + 2 = 0\]
Let P (x, y) be any point on the parabola whose focus is S (0, −3) and the directrix is

\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 0 \right)^2 + \left( y + 3 \right)^2 = \left| \frac{x + 2}{\sqrt{1}} \right|^2 \]
\[ \Rightarrow x^2 + y^2 + 6y + 9 = x^2 + 4x + 4\]
\[ \Rightarrow y^2 + 6y - 4x + 5 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) focus (–2, 0)
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola whose:
focus is (3, 0) and the directrix is 3x + 4y = 1
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola whose:
focus is (2, 3) and the directrix x − 4y + 3 = 0.
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if
the focus is at (−6, −6) and the vertex is at (−2, 2)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
At what point of the parabola x2 = 9y is the abscissa three times that of ordinate?
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.