English

Find the equation of the set of all points whose distance from (0, 4) are 23 of their distance from the line y = 9. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.

Sum

Solution

Let P(x, y) be a point.

We have `sqrt((x - 0)^2 + (y - 4)^2) = 2/3|(y - 9)/1|`

Squaring both sides, we have

`x^2 + (y - 4)^2 = 4/9(y^2 + 81 - 18y)`

⇒ 9x2 + 9(y – 4)2 = 4y2 + 324 – 72y

⇒ 9x2 + 9y2 + 144 – 72y = 4y2 + 324 – 72y

⇒ 9x2 + 5y2 + 144 – 324 = 0

⇒ 9x2 + 5y2 – 180 = 0

Hence, the required equation is 9x2 + 5y2 – 180 = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 204]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 30 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×