English

An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle. - Mathematics

Advertisements
Advertisements

Question

An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

Sum

Solution

As shown in the figure APQ denotes the equilateral triangle with its equal sides of length l (say).


Here AP = l

So AR = l cos30°

= `l  sqrt(3)/2`

Also, PR = `l  sin 30^circ = l/2`.

Thus `(lsqrt(3))/2, l/2` are the coordinates of the point P lying on the parabola y2 = 4ax.

Therefore, `l^2/4 = 4a  (lsqrt(3))/2`

⇒ `l = 8 asqrt(3)`.

THus, 8 `asqrt(3)` is the required length of the side of the equilateral triangle inscribed in the parabola y2 = 4ax.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Solved Examples [Page 195]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Solved Examples | Q 8 | Page 195

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×