मराठी

A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m - Mathematics

Advertisements
Advertisements

प्रश्न

A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.

बेरीज

उत्तर

Let F1 and F2 be two points where the flag posts are fixed on the ground.

The origin O is the mid-point of F1F2.

∴ OF1 - OF2 = `1/2 F_1F_2 = 1/2 xx 8 = 4m`

Coordinates of F1 are (-4, 0) and F2 are (4, 0)

Let P (α, β) be any point on the track.

∴ PF1 + PF2 = 10

∴ `sqrt((α + 4)^2 + (β - 0)^2)` + `sqrt((α - 4)^2 + (β - 0)^2) = 10`

= `sqrt(α^2 + 16 + 8α + β^2)` =  `10 - sqrt(α^2 + 16 - 8α + β^2)`

Squaring both sides, we get

α2 + β2 + 8α + 16 = 100 + α2 + β2 - Bα + 16 `-20 sqrt(α^2 + β^2 - 8α + 16)`

= 16α - 100 = `-20 sqrt(α^2 + β^2 - 8α + 16)`

Again, squaring both sides, we get

= (16α - 100)2 = (`-20 sqrt((α^2 + β^2 - 8α + 16)^2)`

= 256α2 + 10000 - 3200α = 400(α2 + β2 - 8α+ 16)

= 256α2 + 10000 - 3200α = 400α2 + 400β2 - 32008α+ 6400)

= 144α2 + 400β2 = 3600

= `(144α^2)/(3600) + (400β^2)/(3600) = 1`

Thus, the required equation of locus of point P is `x^2/25 + y^2/9 = 1`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Miscellaneous Exercise [पृष्ठ २६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 11 Conic Sections
Miscellaneous Exercise | Q 7 | पृष्ठ २६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation of the ellipse in the case: 

 focus is (1, 2), directrix is 3x + 4y − 5 = 0 and e = \[\frac{1}{2}\]

 

 


Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (−3, 1) and has eccentricity \[\sqrt{\frac{2}{5}}\]

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the case:

 The ellipse passes through (1, 4) and (−6, 1).


Find the equation of the ellipse in the case:

 Vertices (± 5, 0), foci (± 4, 0)


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Ends of major axis (± 3, 0), ends of minor axis (0, ± 2) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case: 

Length of major axis 26, foci (± 5, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×