मराठी

Find the equation for the ellipse that satisfies the given conditions: Vertices (±6, 0), foci (±4, 0) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)

बेरीज

उत्तर

Vertices (±6, 0), foci (±4, 0)

Here, the vertices are on the x-axis.

Therefore, the equation of the ellipse will be of the form `x^2/a^2 + y^2/b^2` = 1, where a is the semi-major axis.

Accordingly, a = 6 and c = 4

It is known that a2 = b2 + c2

∴ 62 = b2 + 42

= 36 = b2 + 16

= b2 = 36 - 16

= b = `sqrt20`

Thus, the equation of the ellipse is `x^2/6^2 + y^2/(sqrt(20))^2 = 1` or `x^2/36 + y^2/20 = 1`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise 11.3 [पृष्ठ २५५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise 11.3 | Q 12 | पृष्ठ २५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


Find the equation for the ellipse that satisfies the given conditions:

Major axis on the x-axis and passes through the points (4, 3) and (6, 2).


A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (−3, 1) and has eccentricity \[\sqrt{\frac{2}{5}}\]

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case:

 eccentricity e = \[\frac{2}{3}\] and length of latus rectum = 5

 

Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the case:

 The ellipse passes through (1, 4) and (−6, 1).


Find the equation of the ellipse in the case:

 Vertices (± 5, 0), foci (± 4, 0)


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case: 

Length of major axis 26, foci (± 5, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×