मराठी

Find the Equation of the Ellipse in the Case: (Iii) Focus is (−2, 3), Directrix is 2x + 3y + 4 = 0 and E = 4 5 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 

थोडक्यात उत्तर

उत्तर

\[\text{ Let S( - 2, 3) be the focus and ZZ' be the directrix . } \]
\[\text{ Let P(x, y) be any point on the ellipse and let PM be the perpendicular from P on the directrix }  . \]
\[\text{ Then by the definition, we have: } \]
\[SP = e \times PM\]
\[ \Rightarrow SP = \frac{4}{5} \times PM\]
\[ \Rightarrow \frac{5}{4}SP = PM\]
\[ \Rightarrow \frac{25}{16} \left( SP \right)^2 = {PM}^2 \]
\[ \Rightarrow \frac{25}{16}\left[ \left( x + 2 \right)^2 + \left( y - 3 \right)^2 \right] = \left| \frac{2x + 3y + 4}{\sqrt{2^2 + 3^2}} \right|^2 \]
\[ \Rightarrow \frac{25}{16}\left[ x^2 + 4 + 4x + y^2 + 9 - 6y \right] = \frac{4 x^2 + 9 y^2 + 16 + 12xy + 24y + 16x}{13}\]
\[ \Rightarrow 325\left( x^2 + 4 + 4x + y^2 + 9 - 6y \right) = 16\left( 4 x^2 + 9 y^2 + 16 + 12xy + 24y + 16x \right)\]
\[ \Rightarrow 325 x^2 + 1300 + 1300x + 325 y^2 + 2925 - 1950y = 64 x^2 + 144 y^2 + 256 + 192xy + 384y + 256x\]
\[ \Rightarrow 261 x^2 + 181 y^2 + 1044x - 2309y - 192xy + 3969 = 0\]
\[\text{ This is the required equation of the ellipse } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 26: Ellipse - Exercise 26.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 26 Ellipse
Exercise 26.1 | Q 2.3 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


Find the equation for the ellipse that satisfies the given conditions:

Major axis on the x-axis and passes through the points (4, 3) and (6, 2).


A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

 focus is (−1, 1), directrix is x − y + 3 = 0 and e = \[\frac{1}{2}\]

 
 

 


Find the equation of the ellipse in the case: 

 focus is (1, 2), directrix is 3x + 4y − 5 = 0 and e = \[\frac{1}{2}\]

 

 


Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (−3, 1) and has eccentricity \[\sqrt{\frac{2}{5}}\]

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the case:

 The ellipse passes through (1, 4) and (−6, 1).


Find the equation of the ellipse in the case:

 Vertices (± 5, 0), foci (± 4, 0)


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Ends of major axis (± 3, 0), ends of minor axis (0, ± 2) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


Find the equation of ellipse whose eccentricity is `2/3`, latus rectum is 5 and the centre is (0, 0).


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×