English

Find the equation for the ellipse that satisfies the given conditions: Vertices (±6, 0), foci (±4, 0) - Mathematics

Advertisements
Advertisements

Question

Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)

Sum

Solution

Vertices (±6, 0), foci (±4, 0)

Here, the vertices are on the x-axis.

Therefore, the equation of the ellipse will be of the form `x^2/a^2 + y^2/b^2` = 1, where a is the semi-major axis.

Accordingly, a = 6 and c = 4

It is known that a2 = b2 + c2

∴ 62 = b2 + 42

= 36 = b2 + 16

= b2 = 36 - 16

= b = `sqrt20`

Thus, the equation of the ellipse is `x^2/6^2 + y^2/(sqrt(20))^2 = 1` or `x^2/36 + y^2/20 = 1`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise 11.3 [Page 255]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise 11.3 | Q 12 | Page 255

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

 focus is (−1, 1), directrix is x − y + 3 = 0 and e = \[\frac{1}{2}\]

 
 

 


Find the equation of the ellipse in the case: 

 focus is (1, 2), directrix is 3x + 4y − 5 = 0 and e = \[\frac{1}{2}\]

 

 


Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (−3, 1) and has eccentricity \[\sqrt{\frac{2}{5}}\]

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

 The ellipse passes through (1, 4) and (−6, 1).


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Ends of major axis (± 3, 0), ends of minor axis (0, ± 2) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


Find the equation of ellipse whose eccentricity is `2/3`, latus rectum is 5 and the centre is (0, 0).


If P is a point on the ellipse `x^2/16 + y^2/25` = 1 whose foci are S and S′, then PS + PS′ = 8.


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×