English

Find the equation for the ellipse that satisfies the given conditions: Vertices (0, ±13), foci (0, ±5) - Mathematics

Advertisements
Advertisements

Question

Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)

Sum

Solution

Vertices (0, ±13), foci (0, ±5)

Here, the vertices are on the y-axis.

Therefore, the equation of the ellipse will be of the form `x^2/b^2 + y^2/a^2` = 1, where a is the semi-major axis.

Accordingly, a = 13 and c = 5

It is known that a2 = b2 + c2

∴ 132 = b2 + 52

= 169 = b2 + 25

= b2 = 169 - 25

= b = `sqrt144` = 12

Thus, the equation of the ellipse is `x^2/12^2 + y^2/13^2 = 1` or `x^2/144 + y^2/169 = 1`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise 11.3 [Page 255]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise 11.3 | Q 11 | Page 255

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


Find the equation for the ellipse that satisfies the given conditions:

Major axis on the x-axis and passes through the points (4, 3) and (6, 2).


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (−3, 1) and has eccentricity \[\sqrt{\frac{2}{5}}\]

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case:

 eccentricity e = \[\frac{2}{3}\] and length of latus rectum = 5

 

Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the case:

 Vertices (± 5, 0), foci (± 4, 0)


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Ends of major axis (± 3, 0), ends of minor axis (0, ± 2) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case: 

Length of major axis 26, foci (± 5, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


If P is a point on the ellipse `x^2/16 + y^2/25` = 1 whose foci are S and S′, then PS + PS′ = 8.


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


The equation of the ellipse having foci (0, 1), (0, –1) and minor axis of length 1 is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×