English

Find the Equation of the Ellipse in the Case:(Vi) Vertices (± 5, 0), Foci (± 4, 0) - Mathematics

Advertisements
Advertisements

Question

Find the equation of the ellipse in the case:

 Vertices (± 5, 0), foci (± 4, 0)

Answer in Brief

Solution

\[ \text{ Vertices} \left( \pm 5, 0 \right) \text{ and focus} \left( \pm 4, 0 \right)\]
\[\text{ The coordinates of its vertices and foci are } \left( \pm a, 0 \right)\text{and } \left( \pm ae, 0 \right), \text{ respectively } .\]
\[i . e . a = 5 \text{ and ae } = 4\]
\[ \therefore e = \frac{4}{5}\]
\[\text{ Now, }  b^2 = a^2 \left( 1 - e^2 \right)\]
\[ \Rightarrow b^2 = 25\left( 1 - \frac{16}{25} \right)\]
\[ \Rightarrow b^2 = 9\]
\[ \therefore \frac{x^2}{25} + \frac{y^2}{9} = 1\]
\[\text{ This is the required equation of the ellipse } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 26: Ellipse - Exercise 26.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 26 Ellipse
Exercise 26.1 | Q 5.06 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

 focus is (−1, 1), directrix is x − y + 3 = 0 and e = \[\frac{1}{2}\]

 
 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation of the ellipse in the case: 

 focus is (1, 2), directrix is 3x + 4y − 5 = 0 and e = \[\frac{1}{2}\]

 

 


Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Ends of major axis (± 3, 0), ends of minor axis (0, ± 2) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


If P is a point on the ellipse `x^2/16 + y^2/25` = 1 whose foci are S and S′, then PS + PS′ = 8.


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


The equation of the ellipse having foci (0, 1), (0, –1) and minor axis of length 1 is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×