English

Find the Equation of the Ellipse in the Following Case: Foci (± 3, 0), a = 4 - Mathematics

Advertisements
Advertisements

Question

Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4

Solution

\[\text{ Foci }=\left( \pm 3, 0 \right)\text{ and }a=4\]
\[\text{ i . e } . ae = 3\]
\[ \Rightarrow e = \frac{3}{4}\]
\[\text{ Now }, e = \sqrt{1 - \frac{b^2}{a^2}}\]
\[ \Rightarrow \frac{3}{4} = \sqrt{1 - \frac{b^2}{16}}\]
\[\text{ On squaring both sides, we get }:\]
\[\frac{9}{16} = \frac{16 - b^2}{16}\]
\[ \Rightarrow b^2 = 7\]
\[ \therefore \frac{x^2}{16} + \frac{y^2}{7} = 1\]
\[\text{ This is the required equation of the ellipse }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 26: Ellipse - Exercise 26.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 26 Ellipse
Exercise 26.1 | Q 5.13 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (±6, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


Find the equation for the ellipse that satisfies the given conditions:

Major axis on the x-axis and passes through the points (4, 3) and (6, 2).


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

 focus is (−1, 1), directrix is x − y + 3 = 0 and e = \[\frac{1}{2}\]

 
 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation of the ellipse in the case: 

 focus is (1, 2), directrix is 3x + 4y − 5 = 0 and e = \[\frac{1}{2}\]

 

 


Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the case:

 The ellipse passes through (1, 4) and (−6, 1).


Find the equation of the ellipse in the case:

 Vertices (± 5, 0), foci (± 4, 0)


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case:  

Ends of major axis (0, ±\[\sqrt{5}\] ends of minor axis (± 1, 0) 


Find the equation of the ellipse in the following case: 

Length of major axis 26, foci (± 5, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


Find the equation of ellipse whose eccentricity is `2/3`, latus rectum is 5 and the centre is (0, 0).


If P is a point on the ellipse `x^2/16 + y^2/25` = 1 whose foci are S and S′, then PS + PS′ = 8.


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


The equation of the ellipse having foci (0, 1), (0, –1) and minor axis of length 1 is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×