Advertisements
Advertisements
Question
If P is a point on the ellipse `x^2/16 + y^2/25` = 1 whose foci are S and S′, then PS + PS′ = 8.
Options
True
False
Solution
This statement is False.
Explanation:
Let P(x1, y1) be a point on the ellipse.
Foci = (± ae, 0)
Here a2 = 25 ⇒ a = 5
b2 = 16 ⇒ b = 4
b2 = a2 (1 – e2)
16 = 25(1 – e2)
⇒ `16/25 = 1- e^2`
⇒ e2 = `1 - 16/25`
⇒ e2 = `9/25`
∴ e = `3/5`
∴ ae = `5 xx 3/5` = 3
So, the foci are S(3, 0) and S(– 3, 0).
Since PS + PS' = 2a = 2 × 5 = 10.
APPEARS IN
RELATED QUESTIONS
Find the equation for the ellipse that satisfies the given conditions:
Vertices (0, ±13), foci (0, ±5)
Find the equation for the ellipse that satisfies the given conditions:
Ends of major axis (±3, 0), ends of minor axis (0, ±2)
Find the equation for the ellipse that satisfies the given conditions:
Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)
Find the equation for the ellipse that satisfies the given conditions:
Length of major axis 26, foci (±5, 0)
Find the equation for the ellipse that satisfies the given conditions:
Foci (±3, 0), a = 4
Find the equation for the ellipse that satisfies the given conditions:
Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)
Find the equation for the ellipse that satisfies the given conditions:
Major axis on the x-axis and passes through the points (4, 3) and (6, 2).
A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.
Find the equation of the ellipse in the case:
focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .
Find the equation of the ellipse in the case:
focus is (−1, 1), directrix is x − y + 3 = 0 and e = \[\frac{1}{2}\]
Find the equation of the ellipse in the case:
focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]
Find the equation of the ellipse in the case:
eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)
Find the equation of the ellipse in the case:
eccentricity e = \[\frac{1}{2}\] and semi-major axis = 4
Find the equation of the ellipse in the case:
eccentricity e = \[\frac{1}{2}\] and major axis = 12
Find the equation of the ellipse in the case:
Vertices (0, ± 13), foci (0, ± 5)
Find the equation of the ellipse in the following case:
Vertices (± 6, 0), foci (± 4, 0)
Find the equation of the ellipse in the following case:
Length of major axis 26, foci (± 5, 0)
Find the equation of the ellipse in the following case:
Length of minor axis 16 foci (0, ± 6)
Find the equation of the ellipse in the following case:
Foci (± 3, 0), a = 4
Find the equation of ellipse whose eccentricity is `2/3`, latus rectum is 5 and the centre is (0, 0).
The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.
The equation of the ellipse having foci (0, 1), (0, –1) and minor axis of length 1 is ______.