English

If P is a point on the ellipse x216+y225 = 1 whose foci are S and S′, then PS + PS′ = 8. - Mathematics

Advertisements
Advertisements

Question

If P is a point on the ellipse `x^2/16 + y^2/25` = 1 whose foci are S and S′, then PS + PS′ = 8.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

Let P(x1, y1) be a point on the ellipse.

Foci = (± ae, 0)

Here a2 = 25 ⇒ a = 5

b2 = 16 ⇒ b = 4

b2 = a2 (1 – e2)

16 = 25(1 – e2)

⇒ `16/25 = 1- e^2`

⇒ e2 = `1 - 16/25`

⇒ e2 = `9/25`

∴ e = `3/5`

∴ ae = `5 xx 3/5` = 3

So, the foci are S(3, 0) and S(– 3, 0).

Since PS + PS' = 2a = 2 × 5 = 10.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 204]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 38 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (±3, 0), ends of minor axis (0, ±2)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


Find the equation for the ellipse that satisfies the given conditions:

Major axis on the x-axis and passes through the points (4, 3) and (6, 2).


A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

 focus is (−1, 1), directrix is x − y + 3 = 0 and e = \[\frac{1}{2}\]

 
 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case: 

 eccentricity e = \[\frac{1}{2}\]  and semi-major axis = 4

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the case:

Vertices (0, ± 13), foci (0, ± 5)

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Length of major axis 26, foci (± 5, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4


Find the equation of ellipse whose eccentricity is `2/3`, latus rectum is 5 and the centre is (0, 0).


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


The equation of the ellipse having foci (0, 1), (0, –1) and minor axis of length 1 is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×