मराठी

The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.

रिकाम्या जागा भरा

उत्तर

The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is 4x2 + 4xy + y2 + 4x + 32y + 16 = 0.

Explanation:

. Let (x1, y1) be any point on the parabola.

According to the definition of the parabola

`sqrt((x_1 + 1)^2 + (y_1 + 2)^2) = |(x_1 - 2y_1 + 3)/sqrt((1)^2 + (-2)^2)|`

Squaring both sides, we get

`x_1^2 + 1 + 2x_1 + y_1^2 + 4 + 4y_1 = (x_1^2 + 4y_1^2 + 9 - 4x_1y_1 - 12y_1 + 6x_1)/5`

⇒ `x_1^2 + y_1^2 + 2x_1 + 4y_1 + 5 = (x_1^2 + 4y_1^2 - 4x_1y_1 - 12y_1 + 6x_1 + 9)/5`

⇒ `5x_1^2 + 5y_1^2 + 2x_1 + 10x_1 + 20y_1 + 25 = x_1^2 + 4y_1^2 - 4x_1y_1 - 12y_1 + 6x_1 + 9`

⇒ `4x_1^2 + y_1^2 + 4x_1 + 32y_1 + 4x_1y_1 + 16` = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise [पृष्ठ २०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise | Q 45 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×