हिंदी

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum. x2 = 6y - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y

योग

उत्तर

The given equation is x2 = 6y.

Here, the coefficient of y is positive. Hence, the parabola opens upwards.

On comparing this equation with x2 = 4ay, we obtain

4a = 6 = a = `3/2`

∴ Coordinates of the focus = (0, a) = `(0, 3/2)`

Since the given equation involves x2, the axis of the parabola is the y-axis.

Equation of directrix, y= -a i.e., y = `-3/2`

Length of latus rectum = 4a = 6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.2 [पृष्ठ २४६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.2 | Q 2 | पृष्ठ २४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


The locus of the points of trisection of the double ordinates of a parabola is a 


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×