Advertisements
Advertisements
प्रश्न
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
विकल्प
x2 + y2 + 2xy + 6ax + 10ay + 7a2 = 0
x2 − 2xy + y2 + 6ax + 10ay − 7a2 = 0
x2 − 2xy + y2 − 6ax + 10ay − 7a2 = 0
none of these
उत्तर
x2 − 2xy + y2 + 6ax + 10ay − 7a2 = 0
Given:
The vertex is at (a, 0) and the directrix is the line x + y = 3a.
The slope of the line perpendicular to x + y = 3a is 1.
The axis of the parabola is perpendicular to the directrix and passes through the vertex.
∴ Equation of the axis of the parabola = \[y - 0 = 1\left( x - a \right)\] (1)
Intersection point of the directrix and the axis is the intersection point of (1) and x + y = 3a.
Let the intersection point be K.
Therefore, the coordinates of K are \[\left( 2a, a \right)\]
The vertex is the mid-point of the segment joining K and the focus (h, k).
∴ \[a = \frac{2a + h}{2}, 0 = \frac{a + k}{2}\]
\[h = 0, k = - a\]
Let P (x, y) be any point on the parabola whose focus is S (h, k) and the directrix is x + y= 3a.
Draw PM perpendicular to x + y = 3a.
Then, we have: \[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 0 \right)^2 + \left( y + a \right)^2 = \left( \frac{x + y - 3a}{\sqrt{2}} \right)^2 \]
\[ \Rightarrow x^2 + \left( y + a \right)^2 = \left( \frac{x + y - 3a}{\sqrt{2}} \right)^2 \]
\[ \Rightarrow 2 x^2 + 2 y^2 + 2 a^2 + 4ay = x^2 + y^2 + 9 a^2 + 2xy - 6ax - 6ay\]
\[ \Rightarrow x^2 + y^2 - 7 a^2 + 10ay + 6ax - 2xy = 0\]
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0); focus (3, 0)
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) focus (–2, 0)
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if
the focus is at (0, −3) and the vertex is at (0, 0)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equation of the parabola if the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3.
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.