हिंदी

Find the equation of the parabola that satisfies the following condition: Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.

योग

उत्तर

Since the vertex is (0, 0) and the parabola is symmetric about the y-axis, the equation of the parabola is either of the form x2 = 4ay or x2 = –4ay.

The parabola passes through point (5, 2), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form x2 = 4ay, while point (5, 2) must satisfy the equation x2 = 4ay.

∴ (5)2 = 4 × a × 2 = 25 = 8a = a = `25/8`

Thus, the equation of the parabola is

x2 = `4 (25/8)y`

2x2 = 25y

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.2 [पृष्ठ २४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.2 | Q 12 | पृष्ठ २४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The equation of the parabola whose vertex is (a, 0) and the directrix has the equation y = 3a, is 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.


The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×