Advertisements
Advertisements
प्रश्न
Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9.
उत्तर
We have
\[PQ = \frac{2}{3}PL\]
\[ \Rightarrow \sqrt{\left( x - 0 \right)^2 + \left( y - 4 \right)^2} = \frac{2}{3}\left( y - 9 \right)\]
\[ \Rightarrow 3^2 \left[ x^2 + \left( y - 4 \right)^2 \right] = 2^2 \left( y - 9 \right)^2 \]
\[ \Rightarrow 9 x^2 + 9 y^2 - 72y + 144 = 4 y^2 - 72y + 324\]
\[ \Rightarrow 9 x^2 + 5 y^2 = 180\]
\[ \Rightarrow \frac{x^2}{20} + \frac{y^2}{36} = 1\]
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/4 + y^2/25 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/16 + y^2/9 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/25 + y^2/100 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/49 + y^2/36 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
36x2 + 4y2 = 144
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
16x2 + y2 = 16
An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
4x2 + y = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas
y2 − 4y − 3x + 1 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 + 4x + 4y − 3 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 8x + 8y
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 8x + 8y
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
4 (y − 1)2 = − 7 (x − 3)
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 5x − 4y − 9
For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles.
Write the axis of symmetry of the parabola y2 = x.
Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.
If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix.
The directrix of the parabola x2 − 4x − 8y + 12 = 0 is
The vertex of the parabola (y − 2)2 = 16 (x − 1) is
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + 16y2 − 24x − 32y − 12 = 0
A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis.
If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse.
Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0.
If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.
If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.
Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1