मराठी

If the Median of the Following Frequency Distribution is 32.5. Find the Values of F 1 and F 2. - Mathematics

Advertisements
Advertisements

प्रश्न

If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.

Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Total
Frequency f1 5 9 12 f2 3 2 40
बेरीज

उत्तर

Given: Median = 32.5
We prepare the cumulative frequency table, as given below.

Class interval: Frequency: (fi) Cumulative frequency (c.f.)
0-10 f1 f1
10-20 5 5 + f1
20-30 9 14 + f1
30-40 12 26 +f1
40-50 f2 26 +f1 + f2
50-60 3 29 + f1 + f2
60-70 2 31 + f1 + f2
  N = 40 = 31 + f1 +f2  

Now, we have
N = 40
31 + f1 + f2 = 40
f2 = 9 - f   ........(1)

Also, `("N")/(2) = 20`

Since median = 32.5 so the median class is 30 - 40.
Here, l = 30, f = 12 , F = 14 + f1 and h = 10

We know that

Median = `"l" + {{("N")/(2) -"F")/("f")} xx "h"`

`32.5 = 30 + {(20-(14+"f"_1))/(12)} xx 10`

`2.5 = ((6 - "f"_1) xx 10)/(12)`

2.5 x 12 = 60 - 10`"f"_1`

`"f"_1 = (30)/(10)`

= 3

Putting the value of `f_1` in (1), we get

`"f"_2` = 9 - 3

= 6
Hence, the missing frequencies are 3 and 6.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Delhi Set 2

संबंधित प्रश्‍न

The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha) 50 − 55 55 − 60 60 − 65 65 − 70 70 − 75 75 − 80
Number of farms 2 8 12 24 38 16

Change the distribution to a more than type distribution and draw ogive.


 The following is the cumulative frequency distribution ( of less than type ) of 1000 persons each of age 20 years and above . Determine the mean age .

Age below (in years): 30 40 50 60 70 80
Number of persons : 100 220 350 750 950 1000

The median of the distribution given below is 14.4 . Find the values of x and y , if the total frequency is 20.

Class interval : 0-6 6-12 12-18 18-24  24-30
Frequency : 4 5 y 1

Write the median class for the following frequency distribution:

Class-interval: 0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80
Frequency: 5 8 7 12 28 20 10 10

If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.


Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.

Class interval: 20−30 30−40 40−50 50−60 60−70 70−80 80−90
Frequency: 10 8 12 24 6 25 15

For one term, absentee record of students is given below. If mean is 15.5, then the missing frequencies x and y are.

Number of days 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 TOTAL
Total Number of students 15 16 x 8 y 8 6 4 70

Look at the following table below.

Class interval Classmark
0 - 5 A
5 - 10 B
10 - 15 12.5
15 - 20 17.5

The value of A and B respectively are?


If the sum of all the frequencies is 24, then the value of z is:

Variable (x) 1 2 3 4 5
Frequency z 5 6 1 2

The following table shows the cumulative frequency distribution of marks of 800 students in an examination:

Marks Number of students
Below 10 10
Below 20 50
Below 30 130
Below 40 270
Below 50 440
Below 60 570
Below 70 670
Below 80 740
Below 90 780
Below 100 800

Construct a frequency distribution table for the data above.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×