मराठी

If the sum of first m terms of an A.P. is same as sum of its first n terms (m ≠ n), then show that the sum of its first (m + n) terms is zero. - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of first m terms of an A.P. is same as sum of its first n terms (m ≠ n), then show that the sum of its first (m + n) terms is zero. 

बेरीज

उत्तर

Given: Sm = Sn

Show: S(m+n) = 0

Let the A.P. be denoted as

a1, a2, a3, ........ an ......

With common difference d.

Sm = `m/2[2a_1 + (m - 1)d]`

Sn = `n/2[2a_1 + (n -1)d]`

Given both are equal

`m/2[2a_1 + (m - 1)d] = n/2[2a_1 + (n - 1)d]`

⇒ `1/2 [2a_1m + (m - 1)md] = 1/2[2a_1n + (n - 1)nd]`

⇒ `1/2 [2a_1m + m^2d - md] - 1/2[2a_1n + n^2d - nd] = 0`

⇒ `1/2 [2a_1m - 2a_1n + m^2d - n^2d - md + nd] = 0`

⇒ `1/2 [2a_1(m - n) + d(m^2 - n^2)-d(m - n)= 0]`

⇒ `1/2 (m - n)[2a_1 + (m + n - 1)d] = 0`

2a1 = − [m + n − 1] d              ...(i)

The sum of the first (m + n) terms of the given A.P.

Sm+n = `(m + n)/2 [2a_1 + (m + n -1)d]`       ...(ii)

Put (i) in (ii)

⇒ Sm+n = `(m + n)/2[-(m + n - 1)d + (m + n -1)d]`

Sm+n = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Standard - Outside Delhi Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×