Advertisements
Advertisements
प्रश्न
If the sum of first m terms of an A.P. is same as sum of its first n terms (m ≠ n), then show that the sum of its first (m + n) terms is zero.
उत्तर
Given: Sm = Sn
Show: S(m+n) = 0
Let the A.P. be denoted as
a1, a2, a3, ........ an ......
With common difference d.
Sm = `m/2[2a_1 + (m - 1)d]`
Sn = `n/2[2a_1 + (n -1)d]`
Given both are equal
`m/2[2a_1 + (m - 1)d] = n/2[2a_1 + (n - 1)d]`
⇒ `1/2 [2a_1m + (m - 1)md] = 1/2[2a_1n + (n - 1)nd]`
⇒ `1/2 [2a_1m + m^2d - md] - 1/2[2a_1n + n^2d - nd] = 0`
⇒ `1/2 [2a_1m - 2a_1n + m^2d - n^2d - md + nd] = 0`
⇒ `1/2 [2a_1(m - n) + d(m^2 - n^2)-d(m - n)= 0]`
⇒ `1/2 (m - n)[2a_1 + (m + n - 1)d] = 0`
2a1 = − [m + n − 1] d ...(i)
The sum of the first (m + n) terms of the given A.P.
Sm+n = `(m + n)/2 [2a_1 + (m + n -1)d]` ...(ii)
Put (i) in (ii)
⇒ Sm+n = `(m + n)/2[-(m + n - 1)d + (m + n -1)d]`
Sm+n = 0