Advertisements
Advertisements
प्रश्न
In a A.P., the sum of the three consecutive terms is 24 and the sum of their squares is 194. Find the numbers.
बेरीज
उत्तर
Step 1: Using the sum of terms
(a − d) + a + (a + d) = 24
3a = 24
a = 8
Step 2: Using the sum of squares
(a − d)2 + a2 + (a + d)2 = 194
(8 − d)2 + 82 + (8 + d)2 = 194
(64 − 16d + d2) + 64 + (64 + 16d + d2) = 194
64 + 64 + 64 − 16d + 16d + d2 + d2 = 194
192 + 2d2 = 194
2d2 = 194 − 192
2d2 = 2
d2 = 1
d = ±1
Step 3: Find the terms
If d = 1: The terms are: 8 − 1, 8, 8 + 1 ⟹ 7, 8, 9
If d = −1: The terms are: 8 − (−1), 8, 8 + (−1) ⟹ 9, 8, 7
The three terms of the A.P. are: 7, 8, 9 or 9, 8, 7
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?