मराठी

If the vectors ijkijkai^+j^+k^, i^+bj^+k^ and ijki^+j^+ck^ are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______. -

Advertisements
Advertisements

प्रश्न

If the vectors `ahat("i")+hat("j")+hat("k"),  hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.

पर्याय

  • 2

  • -2

  • 0

  • -1

MCQ
रिकाम्या जागा भरा

उत्तर

If the vectors `ahat("i")+hat("j")+hat("k"),  hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = -2.

Explanation:

Since `ahat("i")+hat("j")+hat("k"),  hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar,

`abs[[a,1,1],[1,b,1],[1,1,c]]=0`

⇒ a (bc - 1) - 1 (c - 1) + 1 (1 - b) = 0

⇒ abc - a - b - c + 2 = 0

⇒ abc - (a + b + c) = -2

shaalaa.com
Vector Product of Vectors (Cross)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×