Advertisements
Advertisements
Question
If the vectors `ahat("i")+hat("j")+hat("k"), hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.
Options
2
-2
0
-1
MCQ
Fill in the Blanks
Solution
If the vectors `ahat("i")+hat("j")+hat("k"), hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = -2.
Explanation:
Since `ahat("i")+hat("j")+hat("k"), hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar,
`abs[[a,1,1],[1,b,1],[1,1,c]]=0`
⇒ a (bc - 1) - 1 (c - 1) + 1 (1 - b) = 0
⇒ abc - a - b - c + 2 = 0
⇒ abc - (a + b + c) = -2
shaalaa.com
Vector Product of Vectors (Cross)
Is there an error in this question or solution?