Advertisements
Advertisements
प्रश्न
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.
पर्याय
`sqrt(2)`
`2sqrt(6)`
24
`2sqrt(2)`
उत्तर
If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to `underline(bb(2sqrt(6))`.
Explanation:
`|veca - 2vecb|^2 = (veca - 2vecb).(veca - 2vecb)`
`|veca - 2vecb|^2 = veca.veca - 4veca.vecb + 4vecb.vecb`
= `|veca|^2 - 4veca.vecb + 4|vecb|^2`
= 4 – 16 + 36 = 24
`|veca - 2vecb|^2` = 24
⇒ `|veca - 2vecb| = 2sqrt(6)`
APPEARS IN
संबंधित प्रश्न
Find the projection of the vector `hati+3hatj+7hatk` on the vector `2hati-3hatj+6hatk`
Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`
If `vec a, vec b, vec c` are unit vectors such that `veca+vecb+vecc=0`, then write the value of `vec a.vecb+vecb.vecc+vecc.vec a`.
If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} =\hat{i} - 2\hat{j} + \hat{k}\text{ and } \vec{b} = 4 \hat{i} - 4\hat{j} + 7 \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and }\vec{b}\] perpendicular to each other if \[\vec{a} = \lambda \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{b} = 4\hat{i} - 9 \hat{j} + 2\hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
Find the cosine of the angle between the vectors \[4 \hat{i} - 3 \hat{j} + 3 \hat{k} \text{ and } 2 \hat{i} - \hat{j} - \hat{k} .\]
If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]
If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\] is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\]
For any two non-zero vectors, write the value of \[\frac{\left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} - \vec{b} \right|^2}{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2} .\]
Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes.
Find the value of θ ∈(0, π/2) for which vectors \[\vec{a} = \left( \sin \theta \right) \hat{i} + \left( \cos \theta \right) \hat{j} \text{ and } \vec{b} = \hat{i} - \sqrt{3} \hat{j} + 2 \hat{k}\] are perpendicular.
Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\]
Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\] are parallel vectors .
Write the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes \[\sqrt{3}\] and 2 respectively if \[\vec{a} \cdot \vec{b} = \sqrt{6} .\]
Write the projection of \[\vec{b} + \vec{c} \text{ on } \vec{a} \text{ when } \vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\]
Let `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.
The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.
If `θ` be the angle between any two vectors `veca` and `vecb`, then `|veca * vecb| = |veca xx vecb|`, when `θ` is equal to
Three vectors `veca, vecb` and `vecc` satisfy the condition `veca + vecb + vecc = vec0`. Evaluate the quantity μ = `veca.vecb + vecb.vecc + vecc.veca`, if `|veca|` = 3, `|vecb|` = 4 and `|vecc|` = 2.
If `veca.hati = veca.(hati + hatj) = veca.(hati + hatj + hatk)` = 1, then `veca` is ______.
If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.