Advertisements
Advertisements
प्रश्न
If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that \[\frac{1}{V} = \frac{2}{S}\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)\]
उत्तर
\[\text { It is given that V is the volume of a cuboid of length = a, breadth = b and height = c . Also, S is surface area of cuboid . } \]
\[\text { Then, V = a } \times b \times c\]
\[\text { Surface area of the cuboid } = 2 \times \text { (length } \times \text { breadth + breadth }\times \text { height + length } \times \text { height) }\]
\[ \Rightarrow S = 2 \times (a \times b + b \times c + a \times c)\]
\[\text { Let us take the right - hand side of the equation to be proven } . \]
\[\frac{2}{S}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = \frac{2}{2 \times (a \times b + b \times c + a \times c)} \times (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\]
\[=\frac{1}{(a \times b + b \times c + a \times c)} \times (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\]
\[\text { Now, multiplying the numerator and the denominator with a } \times b \times c, \text { we get: } \]
\[\frac{1}{(a \times b + b \times c + a \times c)} \times (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \times \frac{a \times b \times c}{a \times b \times c}\]
\[=\frac{1}{(a \times b + b \times c + a \times c)} \times (\frac{a \times b \times c}{a}+\frac{a \times b \times c}{b}+\frac{a \times b \times c}{c}) \times \frac{1}{a \times b \times c}\]
\[=\frac{1}{(a \times b + b \times c + a \times c)} \times (b\times c+a\times c+a\times b) \times \frac{1}{a \times b \times c}\]
\[=\frac{1}{(a \times b + b \times c + a \times c)}\times(a\times b+b\times c+a\times c) \times \frac{1}{a \times b \times c}\]
\[=\frac{1}{a \times b \times c}\]
\[=\frac{1}{V}\]
\[ \therefore \frac{2}{S}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = \frac{1}{V}\]
APPEARS IN
संबंधित प्रश्न
The paint in a certain container is sufficient to paint an area equal to 9.375 m2. How many bricks of dimensions 22.5 cm × 10 cm × 7.5 cm can be painted out of this container?
A 4 cm cube is cut into 1 cm cubes. Calculate the total surface area of all the small cubes.
Each edge of a cube is increased by 50%. Find the percentage increase in the surface area of the cube.
The dimensions of a room are 12.5 m by 9 m by 7 m. There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1 .2 m and each window 1 .5 m by I m. Find the cost of painting the walls at Rs. 3.50 per square metre.
Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.
The length, width and height of a rectangular solid are in the ratio of 3 : 2 : 1. If the volume of the box is 48cm3, the total surface area of the box is
A cube of edge 6 cm and a cuboid with dimensions 4 cm x x cm x 15 cm are equal in volume. Find:
(i) the value of x.
(ii) the total surface area of the cuboid.
(iii) the total surface area of the cube.
(iv) which of these two has a greater surface and by how much?
The total surface area of a cylinder is 6512 cm2 and the circumference of its bases is 88 cm. Find:
(i) its radius
(ii) its volume
The areas of any two faces of a cuboid are equal.