मराठी

The Areas of Three Adjacent Faces of a Cuboid Are X, Y And Z. If the Volume Is V, Prove That V2 = Xyz. - Mathematics

Advertisements
Advertisements

प्रश्न

The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.

थोडक्यात उत्तर

उत्तर

\[\text { The areas of three adjacent faces of a cuboid are x, y and z  }. \]

\[\text { Volume of the cuboid = V }\]

\[\text { Observe that x = length } \times \text { breadth } \]

\[\text { y = breadth } \times\text {  height }, \]

\[\text { z = length } \times \text { height }\]

\[\text { Since volume of cuboid V = length } \times\text {  breadth }\times \text { height, we have: } \]

\[ V^2 = V \times V\]

\[ =\text {  (length } \times \text{breadth } \times \text { height)  }\times (\text{ length  }\times \text { breadth } \times \text { height) }\]

\[ =\text{ (length  }\times \text { breadth }) \times (\text { breadth }\times \text { height) } \times\text {  (length }\times \text { height) }\]

\[ = x \times y \times z\]

\[ = xyz\]

\[ \therefore V^2 = xyz\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Mensuration - II (Volumes and Surface Areas of a Cuboid and a Cube) - Exercise 21.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
पाठ 21 Mensuration - II (Volumes and Surface Areas of a Cuboid and a Cube)
Exercise 21.4 | Q 3 | पृष्ठ ३०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×