Advertisements
Advertisements
प्रश्न
The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.
उत्तर
\[\text { The areas of three adjacent faces of a cuboid are x, y and z }. \]
\[\text { Volume of the cuboid = V }\]
\[\text { Observe that x = length } \times \text { breadth } \]
\[\text { y = breadth } \times\text { height }, \]
\[\text { z = length } \times \text { height }\]
\[\text { Since volume of cuboid V = length } \times\text { breadth }\times \text { height, we have: } \]
\[ V^2 = V \times V\]
\[ =\text { (length } \times \text{breadth } \times \text { height) }\times (\text{ length }\times \text { breadth } \times \text { height) }\]
\[ =\text{ (length }\times \text { breadth }) \times (\text { breadth }\times \text { height) } \times\text { (length }\times \text { height) }\]
\[ = x \times y \times z\]
\[ = xyz\]
\[ \therefore V^2 = xyz\]
APPEARS IN
संबंधित प्रश्न
A plastic box 1.5 m long, 1.25 m wide and 65 cm deep, is to be made. It is to be open at the top. Ignoring the thickness of the plastic sheet, determine:
(i) The area of the sheet required for making the box.
(ii) The cost of sheet for it, if a sheet measuring 1 m2 costs Rs 20.
Mary wants to decorate her Christmas tree. She wants to place the tree on a wooden block
covered with coloured paper with picture of Santa Claus on it. She must know the exact
quantity of paper to buy for this purpose. If the box has length, breadth and height as 80
cm, 40 cm and 20 cm respectively. How many square sheets of paper of side 40 cm would
she require?
An open box is made of wood 3 cm thick. Its external length, breadth and height are 1.48 m, 1.16 m and 8.3 m. Find the cost of painting the inner surface of Rs 50 per sq. metre.
If l is the length of a diagonal of a cube of volume V, then
The length, breadth, and height of a rectangular solid are in the ratio 5: 4: 2. If the total surface area is 1216 cm2, find the length, the breadth, and the height of the solid.
Find the volume of wood required to make a closed box of external dimensions 80 cm, 75 cm, and 60 cm, the thickness of walls of the box being 2 cm throughout.
The total surface area of a cuboid is 46m2. If its height is 1m and breadth 3m, find its length and volume.
The surface area of a cuboid formed by joining two cubes of side a face to face is ______.
A rectangular sheet of dimensions 25 cm × 7 cm is rotated about its longer side. Find the volume and the whole surface area of the solid thus generated.