Advertisements
Advertisements
Question
The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.
Solution
\[\text { The areas of three adjacent faces of a cuboid are x, y and z }. \]
\[\text { Volume of the cuboid = V }\]
\[\text { Observe that x = length } \times \text { breadth } \]
\[\text { y = breadth } \times\text { height }, \]
\[\text { z = length } \times \text { height }\]
\[\text { Since volume of cuboid V = length } \times\text { breadth }\times \text { height, we have: } \]
\[ V^2 = V \times V\]
\[ =\text { (length } \times \text{breadth } \times \text { height) }\times (\text{ length }\times \text { breadth } \times \text { height) }\]
\[ =\text{ (length }\times \text { breadth }) \times (\text { breadth }\times \text { height) } \times\text { (length }\times \text { height) }\]
\[ = x \times y \times z\]
\[ = xyz\]
\[ \therefore V^2 = xyz\]
APPEARS IN
RELATED QUESTIONS
The length, breadth and height of a room are 5 m, 4 m and 3 m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of Rs 7.50 per m2.
Find the ratio of the total surface area and lateral surface area of a cube.
Ravish wanted to make a temporary shelter for his car by making a box-like structure with tarpaulin that covers all the four sides and the top of the car ( with the front face as a flap which can be rolled up). Assuming that the stitching margins are very small, and therefore negligible, how much tarpaulin would be required to make the shelter of height 2.5 m with
base dimensions 4 m × 3m?
A cuboidal vessel is 10 cm long and 5 cm wide. How high it must be made to hold 300 cm3 of a liquid?
If the volumes of two cubes are in the ratio 8: 1, then the ratio of their edges is
The breadth and height of a rectangular solid are 1.20 m and 80 cm respectively. If the volume of the cuboid is 1.92 m3; find its length.
The length, breadth, and height of a cuboid are in the ratio 6: 5 : 3. If its total surface area is 504 cm2; find its dimensions. Also, find the volume of the cuboid.
The external dimensions of an open wooden box are 65 cm, 34 cm, and 25 cm. If the box is made up of wood 2 cm thick, find the capacity of the box and the volume of wood used to make it.
A room is 5m long, 2m broad and 4m high. Calculate the number of persons it can accommodate if each person needs 0.16m3 of air.