Advertisements
Advertisements
Question
The length, breadth, and height of a cuboid are in the ratio 6: 5 : 3. If its total surface area is 504 cm2; find its dimensions. Also, find the volume of the cuboid.
Solution
Let length of the cuboid = 6x
Breadth of the cuboid = 5x
Height of the cuboid = 3x
Total surface area of the given cuboid = 2 (I x b + b x h + h x l)
= 2(6x x 5x + 5x x 3x + 3x x 6x) = 2(30×2 + 15×2 + 18×2)
= 2 x 63×2 = 126x2
But we are given total surface area of the given cuboid = 504 cm2
126x2 = 504 cm2
=> `"x"^2 = 504/126`
=> x2 = 4
=> x = `sqrt(4)`
=> x = 2 cm.
Length of the cuboid = 6x = 6 x 2 = 12 cm
Breadth of the cuboid = 5x = 5 x 2 = 10cm
Height of the cuboid = 3x = 3 x 2 = 6 cm
Volume of the cuboid = l x b x h = 12 x 10 x 6 = 720 cm3
APPEARS IN
RELATED QUESTIONS
The paint in a certain container is sufficient to paint an area equal to 9.375 m2. How many bricks of dimensions 22.5 cm × 10 cm × 7.5 cm can be painted out of this container?
A cubical box has each edge 10 cm and another cuboidal box is 12.5 cm long, 10 cm wide and 8 cm high.
(i) Which box has the greater lateral surface area and by how much?
(ii) Which box has the smaller total surface area and by how much?
Shanti Sweets Stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions 25 cm × 20 cm × 5 cm and the smaller of dimensions 15 cm × 12 cm × 5 cm. For all the overlaps, 5% of the total surface area is required extra. If the cost of the cardboard is Rs 4 for 1000 cm2, find the cost of cardboard required for supplying 250 boxes of each kind.
Find the ratio of the total surface area and lateral surface area of a cube.
Three equal cubes are placed adjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.
Each edge of a cube is increased by 50%. Find the percentage increase in the surface area of the cube.
The cost of preparing the walls of a room 12 m long at the rate of Rs. 1.35 per square metre is Rs. 340.20 and the cost of matting the floor at 85 paise per square metre is Rs. 91.80. Find the height of the room.
The dimensions of a room are 12.5 m by 9 m by 7 m. There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1 .2 m and each window 1 .5 m by I m. Find the cost of painting the walls at Rs. 3.50 per square metre.
Find the volume in cubic metre (cu. m) of the cuboid whose dimensions is length = 12 m, breadth = 10 m, height = 4.5 cm.
How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?
The dimensions of an oil tin are 26 cm × 26 cm × 45 cm. Find the area of the tin sheet required for making 20 such tins. If 1 square metre of the tin sheet costs Rs 10, find the cost of tin sheet used for these 20 tins.
Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.
Find the edge of a cube whose surface area is 432 m2.
Three cubes of each side 4 cm are joined end to end. Find the surface area of the resulting cuboid.
If the areas of the adjacent faces of a rectangular block are in the ratio 2 : 3 : 4 and its volume is 9000 cm3, then the length of the shortest edge is
The cost of constructing a wall 8 m long, 4 m high and 10 cm thick at the rate of Rs. 25 per m3 is
If V is the volume of a cuboid of dimensions x, y, z and A is its surface area, then `A/V`
A cube whose volume is 1/8 cubic centimeter is placed on top of a cube whose volume is 1 cm3. The two cubes are then placed on top of a third cube whose volume is 8 cm3. The height of the stacked cubes is
The breadth and height of a rectangular solid are 1.20 m and 80 cm respectively. If the volume of the cuboid is 1.92 m3; find its length.
The length, breadth, and height of a cuboid are in the ratio 5 : 3: 2. If its volume is 240 cm3; find its dimensions. Also, find the total surface area of the cuboid.
A closed box is cuboid in shape with length = 40 cm, breadth = 30 cm and height = 50 cm. It is made of a thin metal sheet. Find the cost of metal sheet required to make 20 such boxes, if 1 m2 of metal sheet costs Rs. 45.
A room 5 m long, 4.5 m wide, and 3.6 m high have one door 1.5 m by 2.4 m and two windows, each 1 m by 0.75 m. Find :
(i) the area of its walls, excluding door and windows ;
(ii) the cost of distempering its walls at the rate of Rs.4.50 per m2.
(iii) the cost of painting its roof at the rate of Rs.9 per m2.
The sum of the radius and the height of a cylinder is 37 cm and the total surface area of the cylinder is 1628 cm2. Find the height and the volume of the cylinder.
A cylindrical pillar has a radius of 21 cm and a height of 4 m. Find:
- The curved surface area of the pillar.
- cost of polishing 36 such cylindrical pillars at the rate of ₹12 per m2.
The external dimensions of an open wooden box are 65 cm, 34 cm, and 25 cm. If the box is made up of wood 2 cm thick, find the capacity of the box and the volume of wood used to make it.
375 persons can be accommodated in a room whose dimensions are in the ratio of 6 : 4 : 1. Calculate the area of the four walls of the room if the each person consumes 64m3 of air.
Find the Total Surface Area and the Lateral Surface Area of a cuboid whose dimensions are: length = 20 cm, breadth = 15 cm, height = 8 cm
The surface area of a cuboid formed by joining two cubes of side a face to face is ______.
Opposite faces of a cuboid are ______ in area.
Three cubes each of side 10 cm are joined end to end. Find the surface area of the resultant figure.