मराठी

If X = { 8 N − 7 N − 1 : N ∈ N } and Y = { 49 ( N − 1 ) : N ∈ N } X ⊆ Y . - Mathematics

Advertisements
Advertisements

प्रश्न

If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]

उत्तर

Given: 

\[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] 

To prove: 

\[X \subseteq Y\]

\[\text{ Let }: \]

\[ x_n = 8^n - 7n - 1, n \in N\]

\[ \Rightarrow x_1 = 8 - 7 - 1 = 0\]

\[\text{ For any n } \geqslant 2, \text{ we have }: \]

\[ x_n = 8^n - 7n - 1 = (1 + 7 )^n - 7n - 1\]

\[ \Rightarrow x_n = ^{n}{}{C}_0 + ^{n}{}{C}_1 . 7 + ^{n}{}{C}_2 . 7^2 + ^{n}{}{C}_3 . 7^3 + . . . +^{n}{}{C}_n . 7^n - 7n - 1\]

\[ \Rightarrow x_n = 1 + 7n + ^{n}{}{C}_2 . 7^2 + ^{n}{}{C}_3 . 7^3 + . . . + 7^n - 7n - 1 [ \because ^{n}{}{C}_0 = 1 and^{n}{}{C}_1 = n]\]

\[ \Rightarrow x_n = 7^2 {^{n}{}{C}_2 +^{n}{}{C}_3 . 7 + ^{n}{}{C}_4 7^2 + . . . + ^{n}{}{C}_n . 7^{n - 2} }\]

\[ \Rightarrow x_n = 49{^{n}{}{C}_2 + ^{n}{}{C}_3 . 7 + ^{n}{}{C}_4 7^2 + . . . + ^{n}{}{C}_n . 7^{n - 2} }\]

\[\text{ Thus, x_n is some positive integral multiple of 49 for all } n \geqslant 2 . \]

\[X \text{ consists of all those positive integral multiples of 49 that are of the form } 49{ ^{n}{}{C}_2 +^{n}{}{C}_3 . 7 + ^{n}{}{C}_4 7^2 + . . . +^{n}{}{C}_n . 7^{n - 2} } \text{ along with zero } . \]

\[Y = {49(n - 1): n \text{ in } N} \text{ implies that it consists of all integral multiples of 49 along with zero } . \]

\[ \therefore X \subseteq Y\]

\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets - Exercise 1.04 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 1 Sets
Exercise 1.04 | Q 16 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

What universal set (s) would you propose for the following:

The set of right triangles.


What universal set (s) would you propose for the following:

The set of isosceles triangles.


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

Φ


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}


Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{1, 2, 3, 4, 5, 6, 7, 8}


If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that: 

\[\left( A \cup B \right)' = A' \cap B'\] 


If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:

\[\left( A \cap B \right)' = A'B' .\]

 


For any two sets A and B, prove that 

 B ⊂ A ∪ B         


For any two sets A and B, prove that A ⊂ ⇒ A ∩ 


For any two sets of A and B, prove that: 

\[B' \subset A' \Rightarrow A \subset B\]


Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.


Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)


Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.


For any two sets A and B, prove the following: 

\[A \cap \left( A' \cup B \right) = A \cap B\] 


For any two sets A and B, prove the following: 

\[A - \left( A - B \right) = A \cap B\]


For any two sets A and B, prove the following: 

\[A \cap \left( A \cup B \right)' = \phi\] 


For any two sets A and B, prove the following:

\[A - B = A \Delta\left( A \cap B \right)\]


Let U be the universal set containing 700 elements. If AB are sub-sets of U such that \[n \left( A \right) = 200, n \left( B \right) = 300 \text{ and } \left( A \cap B \right) = 100\].Then \[n \left( A' \cap B' \right) =\] 


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ C


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ D


If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y


If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X


If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X


If A and B are subsets of the universal set U, then show that A ⊂ A ∪ B


If A and B are subsets of the universal set U, then show that A ⊂ B ⇔ A ∪ B = B


If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A


In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.


Given the sets A = {1, 3, 5}. B = {2, 4, 6} and C = {0, 2, 4, 6, 8}. Then the universal set of all the three sets A, B and C can be ______.


For all sets A and B, A – (A ∩ B) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×