Advertisements
Advertisements
प्रश्न
If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]
उत्तर
Given:
\[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\]
To prove:
\[X \subseteq Y\]
\[\text{ Let }: \]
\[ x_n = 8^n - 7n - 1, n \in N\]
\[ \Rightarrow x_1 = 8 - 7 - 1 = 0\]
\[\text{ For any n } \geqslant 2, \text{ we have }: \]
\[ x_n = 8^n - 7n - 1 = (1 + 7 )^n - 7n - 1\]
\[ \Rightarrow x_n = ^{n}{}{C}_0 + ^{n}{}{C}_1 . 7 + ^{n}{}{C}_2 . 7^2 + ^{n}{}{C}_3 . 7^3 + . . . +^{n}{}{C}_n . 7^n - 7n - 1\]
\[ \Rightarrow x_n = 1 + 7n + ^{n}{}{C}_2 . 7^2 + ^{n}{}{C}_3 . 7^3 + . . . + 7^n - 7n - 1 [ \because ^{n}{}{C}_0 = 1 and^{n}{}{C}_1 = n]\]
\[ \Rightarrow x_n = 7^2 {^{n}{}{C}_2 +^{n}{}{C}_3 . 7 + ^{n}{}{C}_4 7^2 + . . . + ^{n}{}{C}_n . 7^{n - 2} }\]
\[ \Rightarrow x_n = 49{^{n}{}{C}_2 + ^{n}{}{C}_3 . 7 + ^{n}{}{C}_4 7^2 + . . . + ^{n}{}{C}_n . 7^{n - 2} }\]
\[\text{ Thus, x_n is some positive integral multiple of 49 for all } n \geqslant 2 . \]
\[X \text{ consists of all those positive integral multiples of 49 that are of the form } 49{ ^{n}{}{C}_2 +^{n}{}{C}_3 . 7 + ^{n}{}{C}_4 7^2 + . . . +^{n}{}{C}_n . 7^{n - 2} } \text{ along with zero } . \]
\[Y = {49(n - 1): n \text{ in } N} \text{ implies that it consists of all integral multiples of 49 along with zero } . \]
\[ \therefore X \subseteq Y\]
\[\]
APPEARS IN
संबंधित प्रश्न
What universal set (s) would you propose for the following:
The set of right triangles.
What universal set (s) would you propose for the following:
The set of isosceles triangles.
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{0, 1, 2, 3, 4, 5, 6}
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
Φ
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cup B \right)' = A' \cap B'\]
For any two sets A and B, prove that
B ⊂ A ∪ B
For any two sets A and B, prove that
A ∩ B ⊂ A
For three sets A, B and C, show that \[A \cap B = A \cap C\]
For any two sets, prove that:
\[A \cup \left( A \cap B \right) = A\]
For any two sets A and B, prove that: \[A \cap B = \phi \Rightarrow A \subseteq B'\]
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
For any two sets of A and B, prove that:
\[B' \subset A' \Rightarrow A \subset B\]
Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.
For any two sets A and B, prove the following:
\[A \cap \left( A' \cup B \right) = A \cap B\]
Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( B - A \right)\]
A survey shows that 76% of the Indians like oranges, whereas 62% like bananas. What percentage of the Indians like both oranges and bananas?
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find:
how many can speak English only.
Let A and B be two sets in the same universal set. Then,\[A - B =\]
Let U be the universal set containing 700 elements. If A, B are sub-sets of U such that \[n \left( A \right) = 200, n \left( B \right) = 300 \text{ and } \left( A \cap B \right) = 100\].Then \[n \left( A' \cap B' \right) =\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ D
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B ∪ D
If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X
In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.
The set (A ∩ B′)′ ∪ (B ∩ C) is equal to ______.
If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪ (A ∪ B) ∩ B′) is ______.
For all sets A and B, A – (A ∩ B) is equal to ______.
Match the following sets for all sets A, B, and C.
Column A | Column B |
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |