Advertisements
Advertisements
प्रश्न
Let A and B be two sets in the same universal set. Then,\[A - B =\]
विकल्प
(a) \[A \cap B\]
(b)\[A' \cap B\]
(c)\[A \cap B'\]
(d) none of these.
उत्तर
(c) \[A \cap B'\]
A\[-\]B belongs to those elements of A that do not belong to B.
∴ A\[-\]B =\[A \cap B'\]
APPEARS IN
संबंधित प्रश्न
What universal set (s) would you propose for the following:
The set of right triangles.
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
Φ
If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cap B \right)' = A'B' .\]
For any two sets A and B, prove that
B ⊂ A ∪ B
For any two sets A and B, prove that A ⊂ B ⇒ A ∩ B = A
For any two sets A and B, show that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]=ϕ
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A .\]
For any two sets, prove that:
\[A \cap \left( A \cup B \right) = A\]
Find sets A, B and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]
If A and B are sets, then prove that \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint.
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[A' \cup B = U \Rightarrow A \subset B\]
For any two sets of A and B, prove that:
\[B' \subset A' \Rightarrow A \subset B\]
Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)
Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( A - B \right)\]
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: how many can speak Hindi only
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find:
how many can speak English only.
In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C ∪ D
If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y
If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X
If A and B are subsets of the universal set U, then show that A ⊂ A ∪ B
If A and B are subsets of the universal set U, then show that A ⊂ B ⇔ A ∪ B = B
If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A
A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy newspaper A only.
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C
Match the following sets for all sets A, B, and C.
Column A | Column B |
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |