हिंदी

If a and B Are Sets, Then Prove that a − B , a ∩ B and B − a Are Pair Wise Disjoint. - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are sets, then prove that  \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint. 

उत्तर

\[\left( i \right) \left( A - B \right) \text{ 0and } \left( A \cap B \right)\]
\[\text{ Let } a \in A - B\]
\[ \Rightarrow a \in A \text{ and } a \not\in B\]
\[ \Rightarrow a \not\in A \cap B\]
\[\text{ Hence }, \left( A - B \right) \text{ and } A \cap B \text{ are disjoint sets } . \]
\[\left( ii \right) \left( B - A \right) and \left( A \cap B \right)\]
\[\text{ Let } a \in B - A\]
\[ \Rightarrow a \in B \text{ and } a \not\in A\]
\[ \Rightarrow a \not\in A \cap B\]
\[\text{ Hence }, \left( B - A \right) \text{ and } A \cap B \text{ are disjoint sets } . \]
\[\left( iii \right) \left( A - B \right) \text{ and } \left( B - A \right)\]
\[\left( A - B \right) = \left\{ x: x \in A \text{ and }x \not\in B \right\}\]
\[\left( B - A \right) = \left\{ x: x \in B \text{ and } x \not\in A \right\}\]
\[Hence, \left( A - B \right) \text{ and } \left( B - A \right) \text{ are disjoint sets } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets - Exercise 1.06 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 1 Sets
Exercise 1.06 | Q 10 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

What universal set (s) would you propose for the following:

The set of right triangles.


What universal set (s) would you propose for the following:

The set of isosceles triangles.


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

Φ


Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}


Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?

{1, 2, 3, 4, 5, 6, 7, 8}


If \[X = \left\{ 8^n - 7n - 1: n \in N \right\} \text{ and } Y = \left\{ 49\left( n - 1 \right): n \in N \right\}\] \[X \subseteq Y .\]


For any two sets A and B, prove that 

A ∩ ⊂ A             


For any two sets A and B, prove that A ⊂ ⇒ A ∩ 


For any two sets A and B, show that the following statements are equivalent:

(i) \[A \subset B\] 

(ii) \[A \subset B\]=ϕ 

(iii) \[A \cup B = B\]

(iv) \[A \cap B = A .\] 


For three sets AB and C, show that \[A \cap B = A \cap C\]


For three sets AB and C, show that \[A \subset B \Rightarrow C - B \subset C - A\] 


For any two sets A and B, prove that: \[A \cap B = \phi \Rightarrow A \subseteq B'\] 


Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\] 


For any two sets of A and B, prove that: 

\[B' \subset A' \Rightarrow A \subset B\]


Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.


Show that for any sets A and B, A ∪ (B – A) = (A ∪ B)


Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.


For any two sets A and B, prove that : 

\[A' - B' = B - A\] 


For any two sets A and B, prove the following: 

\[A \cap \left( A' \cup B \right) = A \cap B\] 


For any two sets A and B, prove the following: 

\[A - \left( A - B \right) = A \cap B\]


For any two sets A and B, prove the following: 

\[A \cap \left( A \cup B \right)' = \phi\] 


In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find: 

how many can speak English only. 


Let A and B be two sets in the same universal set. Then,\[A - B =\]


Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\] 


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ B ∪ D


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

B ∪ C ∪ D


If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X


A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20} B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.


Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)


In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.


The set (A ∩ B′)′ ∪ (B ∩ C) is equal to ______.


If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪ (A ∪ B) ∩ B′) is ______.


For all sets A and B, A – (A ∩ B) is equal to ______.


Match the following sets for all sets A, B, and C.

Column A Column B
(i) ((A′ ∪ B′) – A)′ (a) A – B
(ii) [B′ ∪ (B′ – A)]′ (b) A
(iii) (A – B) – (B – C) (c) B
(iv) (A – B) ∩ (C – B) (d) (A × B) ∩ (A × C)
(v) A × (B ∩ C) (e) (A × B) ∪ (A × C)
(vi) A × (B ∪ C) (f) (A ∩ C) – B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×